Oxygen Deficient Zones (ODZs) are naturally occurring functionally anoxic regions of the open ocean which can act as proxies for early Earth’s anoxic ocean. Without free oxygen, microorganisms in these regions use alternative electron acceptors to oxidize organic material. These functionally anoxic regions are also hotspots for chemoautotrophic pathways. Some microorganisms can use arsenic based compounds to oxidize organic material, and others can couple nitrate reduction with arsenic oxidation supporting autotrophic carbon fixation thus linking arsenic respiration with carbon and nitrogen cycling. While arsenic concentrations in modern oceans are relatively low, the Precambrian ocean likely had periods of high arsenic concentrations. Integrating over time and space of anoxic waters, arsenic-based metabolisms may have had significant implications for the biogeochemical cycling of not only arsenic, but also carbon and nitrogen.
Recent work in PNAS identified gene sequences for a complete arsenic respiratory cycle from Eastern Tropical North Pacific (ETNP) ODZ metagenomes. The authors identified arsenotrophic genes for dissimilatory arsenate reduction from one group of microorganisms and genes for a putative chemoautotrophic arsenite oxidation pathway from another group within the ETNP ODZ microbial community. Analysis of genomic sequences from a free-living sample and from particulate-associated sample indicate niche differentiation of these pathways—arsenate reduction genes enriched within the particulate fraction and arenite oxidation enriched in the free-living water column. In addition to the presence of these genes in metagenomes, the authors identified the active expression of these arsenotrophic genes in publicly available metatranscriptomes from the ETNP and Eastern Tropical South Pacific ODZs. Theyalso found an abundance of sequences in the ETNP ODZ for the gene aioA-like, which is a closely related enzyme to arsenite oxidase (aioA), but with an unconfirmed function. The identification of these actively expressed genes in modern ODZs enables further investigation of these cycles that were likely important in early oceans. These findings also highlight that there are still yet to be discovered respiratory pathways in ODZs. Arsenotrophy, in conjunction with other niche respiratory pathways – both known and as yet undiscovered – likely sum to a considerable contribution of energy flow and elemental cycling through these anoxic systems.
Authors:
Jaclyn Saunders (University of Washington; present affiliation Woods Hole Oceanographic Institution)
Clara Fuchsman (University of Washington; present affiliation Horn Point Laboratory)
Cedar McKay & Gabrielle Rocap (University of Washington)
See related University of Washington press-release