Preliminary tests of a saturation approach to determine grazing rates and why it might be useful.

Stephen Archer

Glen Tarran, Susan Kimmance, Nicole Poulton, Laura Lubelchyk, Kevin Posman

Research publications since 1980 (SCOPUS)

Title, Abstract and Keywords

Search terms:

- PP 'ocean'
- BP 'ocean' and 'bacterial production'
- VI 'ocean' and' viral infection'
- MG 'ocean' and 'microzooplankton'

2018

• ZG 'ocean' and 'zooplankton'

Progress in microzooplankton grazing rate determination: molecular approaches

Progress in microzooplankton grazing rate determination: high resolution *in situ* measurements

Prochorococcus mortality synchronized with growth and light

Ribalet et al. 2015: PNAS.

The functional response

• Protistan grazers show Type II Hollings response:

Strobilidium cf. spiralis grazing on Isochrysis galbana Data modeled from Verity (1991) Ingestion is a product of: 5.7 μ l cell⁻¹ ł F = maximum clearance rate T = prey handling time 21 s Ingestion (I) (prey cell⁻¹ h⁻¹) $\langle | \rangle$ 140 120 100 $I_{max} = 169$ 80 $K_{i} = 30$ 60 40 20 40 60 100 120 140 160 80

Prey abundance (x 10³ prey ml⁻¹)

The prey response

Gross growth rate used in model = $0.60 d^{-1}$

Apparent growth: $\mu = \mu \max * (1 - e(-\alpha * C / \mu \max))$

(e.g. Platt et al. 1975)

Saturation approach

Surrogate particle requirements:

- 1. size similar to the phytoplankton of specific interest.
- 2. easily distinguished from the natural prey
- 3. close to being neutrally buoyant remain suspended
- 4. do not influence the growth rate of the natural prey
- 5. are stable in seawater so abundance remains constant
- 6. do not clump together or stick to other particles
- 7. are readily available and cost effective

Saturation approach

Modeled from data of Verity (1991)

Model assumes surrogate and natural prey handled (T) and cleared (F) at the same rates.

Tests in natural waters

Tropical Northeast Atlantic:

Experimental set-up

Example of results

Summary of growth and grazing rates: *Prochlorococcus*

BIGELOW.ORG

Summary of growth and grazing rates: Synechococcus

Testing the fundamentals: culture expts

Oxyrrhis marina on Micromonas pusilla 48 Ingestion rate (prey cell⁻¹ h⁻¹) 40 32 $Imax = 45.2 \pm 3.1$ 24 $Ki = 0.907 \times 10^{6}$ 16 8 0 2 0 6 8 10×10^{6} Prey abundance (cell ml⁻¹)

Functional response:

GFP E. coli as surrogate prey

Ochromonas sp. CCP1391

Potential advantages:

- 1. Does not involve a filtration step: seawater chemistry and time
- 2. Lends itself to flow cytometry, fast sample throughput and accuracy
- 3. Does not dilute the the natural abundance: statistically more robust?

- 4. Potential to determine active grazers by tracing surrogate prey by microscopy.
- 5. The saturation approach can be applied with a minimal impact to seawater chemistry.

Trace gas production:

Trace gas production:

Saturation approach attempt:

- Surrogate: Chroomonas salina (low DMSP producer)
- Additions @ 0 to 10 x natural abundance
- 320 ml polycarbonate bottles
- simulated in situ incubations (55% light)

Summary

- Appears to provide useful information for picoplankton/grazers in oceanic waters
- Could possibly be abbreviated to fewer saturation levels
- Could be targeted at different size classes of prey/predator
- May be most useful for quantifying grazer-mediated trace gas, trace

metal, macronutrient cycling