If you would like to have your recent publications featured on the OCB website and eNewsletter please contact ocb_news@whoi.edu. View our guidelines for writing a OCB Science Highlight.
Many scientists have long hypothesized that the ocean around Antarctica was responsible for changing CO2 levels during ice ages, but lacked definitive evidence. A new study in Nature provides the most direct evidence of this process to date and provides crucial evidence of the mechanisms—including changing sea ice cover and bipolar seesaw (warming in the […]
Read MoreStudies of cruise observations in the Ross Sea are typically biased to a single or a few year(s), and long-term trends have predominantly come from satellites. Consequently, the in situ climatological patterns of nutrients and particulate matter have remained vague and unclear. What are the typical patterns of nutrients and particulate matter concentrations in the […]
Read MoreShelled pteropods (pelagic snails) are abundant planktonic predators and prey, linking grazers and higher trophic levels and contributing to the carbon cycle via consumption and excretion. Pteropods have been heralded as bioindicators of ocean acidification, given their aragonitic shell’s susceptibility to dissolution, which could ultimately lead to declining abundance. However, pteropod population dynamics are understudied, […]
Read MoreHuge numbers of tiny marine animals, known as zooplankton, migrate between the surface ocean and the twilight zone (200 – 1,000 m below the surface) everyday; it is the largest migration event anywhere on the planet. How much carbon do these animals transport with them and how much do they leave behind sequestered in the […]
Read MoreTo detect potential effects of acidification on marine organisms, experimenters most commonly use within-experiment replication, but repeating the experiments themselves is rarely done. While the first approach suffices to detect major CO2 effects, other potentially important responses may get detected and robustly quantified only via serial experimentation. A study by Baumann et al. in Biology Letters comprises a meta-analysis of […]
Read MoreThe Gulf of Mexico (GoM) is an important global hotspot that comprises over 2.1615 million hectares of blue carbon habitats, including mangroves, seagrasses, and salt marshes, which collectively store 480.5 Tg of organic carbon (Corg) just in the upper 1 meter of sediment. Some of these important areas of carbon sequestration are protected or conserved, […]
Read MoreWhy don’t we see ocean acidification in over a decade of high-frequency observations in the Gulf of Maine? The answer lies in a recent decade of changes that raised sea surface temperature and salinity, and in turn dampened the expected acidification signal and caused the saturation states of calcite minerals to increase. From 2004 to […]
Read MoreNitrous oxide (N2O) is a potent greenhouse gas with rising atmospheric concentrations. Atmospheric emissions of N2O are predicted to increase with continued anthropogenic perturbation of the nitrogen cycle, yet the magnitude of these emissions is uncertain, particularly in coastal systems where N2O fluxes are poorly constrained. How do N2O emissions from a eutrophic estuary vary […]
Read MoreGas hydrates are an ice-like storehouse of the greenhouse gas methane found in continental margins of the world ocean. Warming waters can cause hydrates to decompose and release ancient methane to overlying sediment and waters. The continental shelves of the Arctic Ocean have been thought of as “ground zero” for the potential release of methane […]
Read More