If you would like to have your recent publications featured on the OCB website and eNewsletter please contact ocb_news@whoi.edu. View our guidelines for writing a OCB Science Highlight.
Joint feature with GEOTRACES Using an observationally constrained earth system model, S. Khatiwala and co-workers compare different processes that could lead to the 90-ppm glacial atmospheric CO2 drawdown, with an important improvement on the deep carbon storage quantification (i.e. Biological Carbon Pump efficiency). They demonstrate that circulation and sea ice changes had only a modest net […]
Read MoreYear-to-year changes in the flux of CO2 between the atmosphere and the ocean impact the global carbon cycle and climate system, and challenge our ability to verify fossil fuel CO2 emissions. A new study published in Earth System Dynamics suggests that these air-sea CO2 flux variations are predictable several years in advance. A novel set […]
Read MoreJoint feature with GEOTRACES In a recent study, Ardyna et al combined observations of profiling floats with historical trace element data and satellite altimetry and ocean color data from the Southern Ocean to reveal that dissolved iron of hydrothermal origin can be upwelled to the surface. Furthermore, the activity of deep hydrothermal sources can influence […]
Read MoreThe Chesapeake Bay is a 200-mile-long estuary with both economic and ecological importance to the mid-Atlantic region. Runoff, pollution, and algae blooms resulting in hypoxia have been major issues over the past 50 years, and much work has been done to improve the water quality and health of the Bay. Dissolved oxygen concentrations will be […]
Read MoreZooplankton-mediated carbon export is an important, but variable and relatively unconstrained part of the biological carbon pump—the processes that fix atmospheric carbon dioxide in organic material and transport it from the upper sunlit ocean to depth. Changes in the biological pump impact the climate system, but are challenging to quantify because such analyses require spatially […]
Read MoreThe removal of bioavailable nitrogen (N) by anaerobic microbes in the ocean’s oxygen deficient zones (ODZs) is thought to vary over time primarily as a result of climate impacts on ocean circulation and primary production. However, a recent study in PNAS using a data-constrained model of the microbial ecosystem in the world’s largest ODZ revealed […]
Read MoreEarth System Models (ESMs) project that by the end of this century, the aragonite saturation horizon (the boundary between shallower, saturated waters and deeper, undersaturated waters that are corrosive to aragonitic shells) will shoal all the way to the surface in the Southern Ocean, yet the temporal evolution of the horizon has not been studied […]
Read MoreIn 2017, an interdisciplinary group of early career scientists, the Biology Meets Subduction team, visited Costa Rica’s subduction zone, where the ocean floor sinks beneath the continent, to find out if subterranean microbes affect geological processes that move carbon from Earth’s surface into the deep interior. Using carbon and helium isotope measurements of water and […]
Read MoreJoint science highlight with GEOTRACES Carbon storage in the ocean is sensitive to the depths at which particulate organic carbon (POC) is respired back to CO2 within the twilight zone (100-1000m). For decades, it has been an oceanographic priority to determine the depth scale of this regeneration process. To investigate this, GEOTRACES scientists are deploying […]
Read MoreIn the ocean, unicellular eukaryotes are often mixotrophic, which means they photosynthesize and also consume prey. In recent decades, it has become clear that mixotrophs are ubiquitous in sunlit ocean habitats. Additionally, models predict that mixotrophs have important impacts on productivity, nutrient cycling, carbon export, and food web structure. However, there is little understanding of […]
Read More