When will we see significant changes in the ocean due to climate change? A new study in Nature Climate Change confirms that outcomes tied directly to the escalation of atmospheric carbon dioxide have already emerged in the existing 30-year observational record. These include sea surface warming, acidification, and increases in the rate at which the ocean removes carbon dioxide from the atmosphere.
In contrast, processes tied indirectly to the ramp-up of atmospheric carbon dioxide through the gradual modification of climate and ocean circulation will take longer, from three decades to more than a century. These include changes in upper-ocean mixing, nutrient supply, and the cycling of carbon through marine plants and animals.
The researchers performed model simulations of potential future climate states that could result from a combination of human-made climate change and random chance (figure 1). These experiments were performed with an Earth System Model, a climate model that has an interactive carbon cycle such that changes in the climate and carbon cycle can be considered in tandem.
The finding of a 30- to 100-year delay in the emergence of effects suggests that ocean observation programs should be maintained for many decades into the future to effectively monitor the changes occurring in the ocean. The study also indicates that the detectability of some changes in the ocean would benefit from improvements to the current observational sampling strategy. These include looking deeper into the ocean for changes in phytoplankton and capturing changes in both summer and winter ocean-atmosphere exchange of carbon dioxide rather than just the annual mean.
Many types of observational efforts, including time-series or permanent locations of continuous measurement, as well as regional sampling programs and global remote sensing platforms are critical for understanding our changing planet and improving our capacity to detect change.
Authors:
Sarah Schlunegger (Princeton University)
Keith B. Rodgers (Institute for Basic Science and Busan National University, South Korea)
Jorge L. Sarmiento (Princeton University)
Thomas L. Frölicher (University of Bern)
John P. Dunne (NOAA Geophysical Fluid Dynamics Laboratory)
Masao Ishii (Japan Meteorological Agency)
Richard Slater (Princeton University)