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Warming up, turning sour, losing breath
- EBUS as hotspots of global change
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INTRODUCTION

The Eastern Boundary Upwelling Regions as Hotspots
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- Low oxygen regions with high vulnerability for deoxygenation

Eastern Boundary Upwelling Regions are hotspots of global change, as they
are subject to the simultaneous exposure to multiple stressors.

Gruber (2011)



Observed trends and Objective
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UPWELLING INTENSIFICATION
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To explore the biogeochemical sensitivity of EBUS to simultaneous stressors
emanating from changes in:
- Atmospheric CO, (ocean acidification)
- Changes in upwelling (ocean acidification & deoxgenation)

- Changes in stratification (deoxygenation & ocean acidification)

NO ECOSYSTEM IMPACT



Outline

1. Introduction

or why should we be concerned about multiple stressors in EBUS?

2. QOcean acidification

or how the near-shore CalCS might become undersaturated soon

3. Ocean warming and circulation changes

or how are ocean warming and circulation changing OA and O,?

4. Summary and outlook

l I l MULTIPLE STRESSORS IN EBUS



The power of regional modeling
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Regionalization of models permit us to increase resolution to the level needed
to resolve the coastal processes




ROMS

The N,PZD,+CNO, model
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METHODS

Modeling multiple stressors in EBUS

m Timeslice simulations
wmm Transient simulations
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Perturbation simulations with Regional Ocean Modeling System (ROMS) with
NPZD model for the California, Canary, and Humboldt CS
(5km/7km/15 km resolution)



OCEAN ACIDIF.

Evolution of Aragonite saturation horizon and pH
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Evolution since 1750 and projection until 2050
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Volume contribution (%)

10

PROGRESSION

Evolution of chemical habitats in the CalCS

Relative contribution of volumina with a particular Q in the upper 60 m and the nearshore 50km
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Habitats that are acceptable for most CaCO, forming organisms become rare,

even though most of the upper 60m remains supersaturated.

Gruber et al. (2012)
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Outline

1. Introduction

or why should we be concerned about multiple stressors in EBUS?

o.  Ocean acidification

or how the near-shore CalCS might become undersaturated soon

3. Ocean warming and circulation changes

or how are ocean warming and circulation changing OA and O,?

4. Summary and outlook
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MULTISTRESS

And now add changes in temperature and wind-stress

m Timeslice simulations

wm Transient simulations
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MULTISTRESS

Response to doubling of wind-stress
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Changes in winds (and temperature) lead to a complex pattern of changes in
Q2,20 @Nd Oxygen.

13



MULTISTRESS

Critical Volumina: for Saturation State and Oxygen
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Changes in winds and temperature lead changes in changes in both
directions with regard to €2,.,, and oxygen.
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MULTISTRESS

Contrasting responses in the CalCS versus the CanCS
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Strongly contrasting responses to changes in winds and temperature.
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MULTISTRESS

Understanding the co-variability between Q, ., and O,

Minumum O, concentration and Omega at 100m
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As expected, O, and Q,,,, co-vary strongly,
but with different slopes and intercepts



MULTISTRESS

Adding wind...

Minumum O, concentration and Q at 100m
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Wind changes affects primarily the Canary CS, while the relationship remains

in the CalCS
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MULTISTRESS

Adding CO.,...

Minumum O, concentration and Q at 100m
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The increase in atmospheric CO, decreases Q,,,,
while it has no impact on O, (in our model)
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MULTISTRESS

Adding wind and CO....

Minumum O, concentration and Q at 100m
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The joint impact is mostly driven by atmospheric CO,, with wind changes
enhancing the changes, particularly in the Canary CS.



Trying to understand the differences...

Atmospheric CO, uptake

Photos

2. Increased mixing ¢
Reduced buildup of low O2

Remineralizatior

Enhanced Upwelling

1. Increased advection of low (
Shoaling of the hypoxic boundary

The changes in €2,,., and O, are a result of the balance between advection/

arag

mixing and local sources minus sinks (production & remineralization)



How can we understand the differences...

California CS Canary CS

Remineralization

Upwelling , Upwelling ,

Irge scale OMZ
0

Basin scale forcing (e.g., depth/size of OMZ) + local environmental factors
(e.g., shelf width) will strongly control the response of ocean acidification
and coastal hypoxia to upwelling/stratification increase in EBUS



Summary and Outlook

The California Current System is bound to progress toward
large and widespread undersaturation with regard to
aragonite within the next few decades.

Changes in upwelling and ocean warming will modify ocean
acidification somewhat. They have much more substantial

impacts on oxygen, albeit with large regional differences.

EBUS are hotspots of change. They may provide an ideal
testbed for studying the impact of multiple stressors on
marine life and biogeochemistry.
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EBUS

Evolution of pH and Q, ,,.ite in the Humoldt CS
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The Humboldt Current System is highly prone to become undersaturated in the
upper ocean, while the Canary Current System will likely remain supersaturated



