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Schematic diagram of _major fluxes
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1. Exchange of BBL-interior
water by turbulent eddies and
advection.

2. Particle sinking and
resuspension,; migrating
zooplankton.

**Common occurrence of physically
maintained, intermittent or
permanent particle resuspension
layer = Benthic Nepheloid Layer
(BNL)

3. Exchange of dissolved, colloidal,
and suspended particle matter
across the sediment-water
interface.

4 & 5. Bioturbated sediment mixing

zone ! infection and modification of

particulate, colloidal and dissolved
material.

6. Lateral advection input of
material.




Benthic Nepheloid Layers in the Ocean:

For many years interest and focus on deep BNLs @>2 km (e.g., McCave,
Biscaye, Eittrem, Spinrad, Gorsline, Ewing).

Layer was primarily defined and recognized by substantial increase in
suspended particles indicated by significant increase in light attenuation and
extending to sediment-water interface.

Found along base of deep slopes and in abyssal basins strongly influenced by

western boundary currents and deep penetrating eddies—> thus driven by
deep energetic flows.

Composition assumed and found to be largely lithogenic—fine clays
particles (2-5 um) responsible for optical signature of high turbidity.

Close correlation between suspended particle mass (SPM) and attenuation
Indicates suspended matter in deep BNLs is refractory, high scattering
mineral particles.




Increased examination of continental margin BNLS, biological rate studies
and new optical and particle collection technologies reveal a far more
geochemically, biologically, and physically dynamic BNL with a variable
and diverse particle population .




Optical and pump studies: BNL contains mm-size flocs, light scattering AND
absorbing particles> lack of strong correspondence between c, and SPM;
strong quantitative relationship between c, and POC; variable PSD with depth
in BNL impacts cp; aggregation and disaggregation of organic detrital particles
(Boss, Biscaye, Bishop, Hill, Pilskaln).

Geochemical and optical studies: organic matter in BNL-> labile POM such
as chlorophyll; tightly bound aged organic carbon on clays; seasonal variation
In delivery of POC and biogenic minerals to BNL; pulsed inputs to BNL of N-
compounds from sediments; variable CDOM concentrations.; elevated protein,
POC, PON vs. immediately overlying clear water (Ransom, Pilskaln, Townsend,

Christensen, Mayer).
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CBED Rept.




Biological and chemical studies: HIGH zooplankton biomass, diversity
and grazing/respiration rates in BNL; attached and free-living bacterial
communities distinguishable from surface water communities; elevated

protozoan biomass relative to overlying particle-free water (Smith,
Wainright, Wishner, Puig, Townsend, Rooney-Varga)

Physical flow/optical/chemical studies: significant role of tidally
generated internal waves in forming and maintaining margin BNLS;
seasonal storms and inflow of slope waters onto shelf-> increased turbidity
and nutrient injection to BNL (Fanning, Drake, Cacchione, Grant).
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Diverse data sets indicate that BNL is a distinct environment
within which biologically and physically-driven, particle-based
chemical transformations occur and represent early diagenetic
reactions, thus impacting the balance between remineralization

and the benthic delivery of PON and POC over variable time

scales.

Common occurrence of BNLs on the continental margins where
POC production, export, benthic remineralization, and
accumulation are maximal argues for better understanding of
biogeochemical processes occurring in environment through
which all particle matter must pass prior to sediment/water
Interface delivery.

Is the mismatch often observed between predicted POC delivery
rates and carbon required to fuel benthic oxygen consumption due
In any measure to POC modification in the BNL?




Gulf of Maine: Semi-enclosed shelf sea with several deep (~-300 m) basins, shallow ledges
and extensive glacially-deposited
sand bank (Georges Bank).

" Black aﬁ;rows: Surface flow, <75 m
Red arrows: Deep flo ,3>75 m
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Temporal variability in net community production (NCP = autotrophy —
respiration integrated to 1% light level) from high-rate O, data (UNH Buoy)
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Thick BNLSs in basins: First documented with
CTD/beam attenuation profiles in 1986 (Spinrad).

Found to be persistent and consistent feature of 10-
30 m thickness throughout Gulf (hnumerous
investigators, 1986-present).
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October 2004 BNL
survey:

15 CTD &
transmissometer
transects from Mass
Bay to Bay of Fundy

Transect lengths:
~50-150 km

Bottom depth range:
50-300 m

Pilskaln et al. 2007; 2008




_ Mass Bay
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to Wilkinson

Portsmouth
across Stellwagen Examples of 2004 Gulf

to Wilkinson Basin (B) of Maine beam
attenuation profile
transects.
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Mt. Desert
to Jordan
Basin (H)

Grand Manan Is.
to Bay of Fundy
Channel (M)

Northwestern
Jordan Basin (J)

Bay of
Fundy (N)

*Beam
attenuation due to
particles (c,) vs.
SPM relationship
problematic in
GoM:

*Low r2 value of
0.46
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diversity
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Time-series sediment traps: Substantially higher deep-water
resuspension fluxes =
Clear evidence of active benthic nepheloid layers.

**Significantly higher resuspension fluxes in east (Jordan Basin).

i =
) ' *Seasonal peaks in mass export commonly reflected in deep BNL
\ resuspension fluxes.
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2008-2009 Wilkinson Basin: 200 m
—4—POC

Examples of POC and biogenic
mineral resuspension fluxes
measured in Gulf of Maine BNL.
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BNL organic carbon age and lability:

Refractory/Labile?

*Average BNL (and surface
sediment) particulate organic
carbon content = 3%

*BNL resuspension flux:
Relatively low C/N ratio of 8

Pump-sampling and A4C of
Jordan Basin suspended POC
April 2006:

Mixed POC sources of aged
carbon from bottom sediments
and younger planktonic carbon

originating in upper water

column (Hwang & Eglinton, unpubl.)
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2009-2010 Wilkinson Basin BNL CDOM Time-Series: 200 m

March 2010 input of fresh water to BNL reflected in large CDOM spike from
typically low values of higher salinity water.
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DNA/PCR (polymerase chain
reaction) analyses for microbial o= %
community composition (8 ‘
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Intriguing results:

Where BNL absent, surface and near-
bottom bacterial communities similar.

Where BNL present, surface and near-
bottom communities distinctly
different.

?More denitrifiers when BNL present?



In the deeper Gulf of Maine basins—> decrease in dissolved oxygen
associated with benthic nepheloid layer.
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Abundant biological component in Gulf Cyst size: 50 x 100 um

BNL: toxic dinoflagellate Alexandrium cysts. (from Kirn et al., 2005) E CaT

Deep Eastern Gulf of Maine

Deep Western Gulf of Maine
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Surface sediment (0-1 cm) Alex. cyst
counts, Oct. 2009
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Gulf BNL offers natural laboratot i
processes occurring in s

Mooring/ buoy-based data collection contiﬁuf
forthcoming.

Modeling of Gulf-wide BNL distribution and movement and address question of ofszre |
transport to adjacent deep slope.
e - —

Conclusions:

Lateral movement of BNL indicated by comparison of trap resuspension fluxes, surface
sediment cyst abundance and seasonal delivery from overlying water column.

BNL shows strong compositional relationships to seasonal upper water column biogenic
fluxes and impacts of various fresh and saltwater inflows to Gulf.

50% of POC in BNL resuspension fluxes: 50% POC, 25% opal, less than 10% CaCO,
originates in upper water column.




So check out your local B

Thanks to NOAA RMRP and ECOHAB programs and to many
and present Gulf of Maine-iac colleagues.




