The role of micronectonic vertical migrants in the ocean carbon pump

Santiago Hernández-León

Instituto de Oceanografía y Cambio Global

Canary Islands, Spain

Active Flux

Bordes et al. (2010)

Table 4.1. Zooplankton active flux estimated in different oceanic regions.

Location	Time of year	Migrant biomass (mg C·m⁻²)	Respiratory flux (mg C·m ⁻² ·d ⁻¹)	Gut flux (mg C·m ⁻² ·d ⁻ 1)	% of POC flux	References
Oligotrophic area						
HOT		30.2 - 33.8	1.3-1.7	-	4ª	Roman et al., 2002
Equator divergence		2.8 - 21.8	0.9-1.2	-	(<1-2 ^a)	Roman et al. (2002)
BATS	March/April	192 (84–540)	14.5 (6.2-40.8)	-	34 (18-70) ^a	Dam et al. (1995)
BATS	year-round	50 (0-123)	2.0 (0-9.9)	-	8 (0-39) ^b	Steinberg et al. (2000)
BATS	ATS year-round		-	0.8 (0.007-4.5)	4 (0.03-21) ^c	Schnetzer and Steinberg (2002)
Western Equator	October	46.9	3	-	6	Le Borgne and Rodier (1997)
North (Oceanic)	Oct-Nov	30 ± 10	2.2 ± 0.3	-	-	Isla and Anadón (2004)
Eastern Equator	March - April	96 ± 25.2	4.2 ± 1.2	-	18 ^a	Zhang and Dam (1997)
Eastern Equator	October	154.8 ± 32.4	7.3 ± 1.4	-	25 ^a	Zhang and Dam (1997)
ALOHA	Year-round	162 (108-216)	3.6 (2.6 - 19.1)	-	15 (12-18) ^a	Al-Mutairi and Landry (2001)
ALOHA	June - July	157.9	3.7	-	18 ^a	Steinberg et al. (2008)
Eu- Meso-trophic area						
Central Equator (HNLC)	October	52.9	6	-	4 ^a	Le Borgne and Rodier (1997)
North (coastal)	Oct-Nov	360 ± 70	30.3 ± 1.9	-	-	Isla and Anadón (2004)
North (poleward current)	Oct-Nov	270 ± 210	10.4 ± 6.3	-	-	Isla and Anadón (2004)
Western Equator	October	46.9	3	-	6 ^a	Le Borgne and Rodier (1997)
Western Equator	February	367 (144 - 447)	22.7 (7.3-19.1)	4.8 (2.6-4.4)	24 (13-35) ^a	Hidaka <i>et al.</i> (2001)
Canary Current						
Canary Islands	March	204 (108 - 341)	0.8 (0.5-1.4)	0.1 (0.05-0.18) ^e	1.8 (1.1-2.7) ^d	Chapter 3.2
Canary Islands	June	580 - 1280	1.8 - 8.3	0.1 - 0-4 ^e	15-53 ^d	Yebra et al. (2005)
Canary Islands	August	247 - 125	4.2 - 1.9	0.3 - 2.4 ^e	20-45 ^d	Hernández-León et al. (2001a)
26°N	Sept-Oct	325 (106 - 486)	0.6 (0.02 - 1.2)	$0.8(0.01 - 3.0)^{e}$	3.3 (0.1-9.0) ^f	Chapter 3.3
	May-June	314 (163.2 - 408)	2.3 (1.7 - 3.4)	$0.2(0.03 - 0.4)^{e}$	47.8 (26.9-64.4) ^f	Chapter 3.4
21°N	Sept-Oct	857 (368 - 1601)	6.5 (1.1 - 14.9)	22.7 (1.3-96.1) ^e	66.0 (0.1-149.5) ^f	Chapter 3.3
	May-June	314 (426.4 - 4480)	2.3 (2.7 - 48.6)	9.5 (0.05-28.0) ^e	(118.6 (29.1-273.7)	Chapter 3.4

^a %POC flux represents only respiratory flux. ^bActive flux includes DOC. ^cActive flux represents only gut flux. ^dRespiratory flux plus gut flux. ^eGut flux assessed with GF.

^fPotential ingestion assessed from respiration.

Putzeys (2013)

Hernández-León et al. (2010)

Bordes et al. (2010)

Arístegui et al. (2003)

But,

Hidaka et al. (2001) showed that flux due to micronektonic organisms was 56-60% of total active flux.

MOHT Oozeki et al. (2004)

Ariza et al. (in prep.)

Ariza et al. (in prep.)

Ariza et al. (in prep.)

Ariza et al. (in prep.)

Neuer et al. (2007)

Ariza et al. (in prep.)

Ariza et al. (in prep.)

Passive flux:	11.9 ±5.8 mgC·m ⁻² ·d ⁻¹
Resp. flux zooplankton:	6.9 ±4.2 mgC·m ⁻² ·d ⁻¹
Respiratory flux micronekton:	2.9 ±1.0 mgC·m ⁻² ·d ⁻¹
Gut flux micronekton:	2.1 ±0.7 mgC·m ⁻² ·d ⁻¹
Excretion flux micronekton:	? mgC·m ⁻² ·d ⁻¹
Mortality:	? mgC·m ⁻² ·d ⁻¹

Ariza et al. (in prep.)

Neuer et al. (2007)

Kaartvedt et al. (2012)

Kaartvedt et al. (2012)

Irigoien et al. (2014)

Table 1 | Acoustic fishes biomass estimates.

s _A estimate	Acoustic fishes biomass estimates									
	Total s _A	Average	Median	75%	25%	Max	Min			
		$-34.6dbkg^{-1}$	$-$ 30.8 db kg $^{-1}$	$-$ 28.4 db kg $^{-1}$	$-42.2{\rm db}{\rm kg}^{-1}$	$-$ 26.8 db kg $^{-1}$	$-46.8\mathrm{db}\mathrm{kg}^{-1}$			
OLS: $s_A = 2384.4^* \ln(PP) - 11678$	4.24E+17	28,363	11,824	6,804	163,215	4,707	470,717			
OLS: In (s _A)=1.52* In (PP)-1.36	4.70E+17	31,449	13,110	7,544	180,972	5,219	521,930			
GWR: $\ln (s_A) = 1.36^* \ln (PP) - 0.2$	5.57E + 17	37,264	15,534	8,939	214,433	6,184	618,432			
GWR different equations for	4.38E+17	29,321	12,223	7,034	168,725	4,866	486,607			
PP above and below 400*										
Cruise average s _A xocean surface deeper 1,000 m	4.14E + 17	27,427	11,433	6,579	157,826	4,552	455,176			

GWR, geographically weighted regression; OLS, ordinary least squares regression. Total backscatter between 40° N and 40° S estimated from PP (total s_A) and different acoustic to weight (db kg⁻¹) ratios (see Table 2).

*See Supplementary Table 1 for details on the GWR equation parameters above and below 400 mg C m⁻² d⁻¹.

Irigoien et al. (2014)

Irigoien et al. (2014)

Irigoien et al. (2014)

- Some potential reasons:
 - Oligotrophic areas generally warmer
 - Phytoplankton small, microbial loop, but not sinking
 - Transparency improves visual predation
 - Refuge against predators in deep waters.

Two main conclusions with high implications for biogeochemistry:

- Mesopelagic fish biomass at least 10 times higher than previously thought
- The role of mesopelagic fish in carbon fluxes needs to be re-evaluated

Malaspina leg1

Hernández-León et al. (in prep.)

Hernández-León et al. (in prep.)

Day

Hernández-León et al. (in prep.)

Night

Hernández-León et al. (in prep.)

Pacific transect

Hernández-León et al. (in prep.)

Malaspina leg5 (day - night)

Hernández-León et al. (in prep.)

Subtropical gyre

Equatorial upwelling

Hernández-León et al. (in prep.)

Low NA bacteria

Stn 95

Vinogradov (1953)

In summary,

- Active flux seems to be similar to POC flux in subtropical waters
- Clear gap in our knowledge of the biological pump
- The acoustic signal below the upwelling zone reached 4000 m depth
- Enhancement of the biological pump efficiency (true sequestration)
- Ladder of Migration

Migrants and Active Flux In the Atlantic Ocean

MAFIA cruise

- Broadband acoustics
- 24 h stations:
 - LADCP acoustics (4000 m depth)
 - MOCNESS 1 m² (zooplankton)
 - MOHT 5 m² (small micronekton)
 - Midwater trawl (large micronekton)
 - Neuston net
 - Video recorder

1

Thank you

